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IPM Main Computational Operation

Solution of a linear system

Large dimension

High degree of sparsity

Most expensive step
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Linear Program Problem

Primal

min ctx
Ax = b
x ≥ 0

Dual

max bT y
AT y + z = c
z ≥ 0

where Am×n has full hank.



FFFFFFFFFFFFFFFFFFFFFFFFFFF

Otimality Conditions

Ax = b, (primal feasible)

Aty + z = c,(dual feasible)

XZe = 0, (complementarity condition)

(x , z) > 0
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Newton’s System

A 0 0
0 At I
Z 0 X

dxdy
dz

 =

rprd
rc

 (1)

(dx , dy , dz) is the search direction to be computed;

rp = b − Ax , rd = c − Aty − z , rc = −XZe + σµe;

µ = x tz/n (duality gap);

σ ∈ [0, 1] (centrality parameter).
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Normal Equation System - Direct solution

One of the most common approaches to solve the Newton’s
system reduces it to the normal equations

ADATdy = r̃

and apply the Cholesky factorization in the system matrix.
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Normal Equation System - Direct solution

The great disadvantage of Cholesky is the number of
generated fill-in.
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Normal Equation System - Iterative method

Iterative method: Preconditioned Conjugate Gradient.

Preconditioning: (MADAtMt)(M−tdy) = Mr .

Hybrid preconditioner: Controlled Cholesky factorization in
early iterations and the splitting preconditioner in the later
iterations.
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Controlled Cholesky Factorization (CCF)

Incomplete Cholesky factorization

ADAt = LLt − R

L is less dense than the Cholesky factor.

The fill-in column is controlled by a parameter η.

Given the L j column, only the kj = η + nnj largest nonzeros
entries will be kept in the column, where nnj is the number of
the ADAt matrix j column nonzero entries.
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CCF

When η < m the CCF computation requires less storage than
the Cholesky factorization computation.

If η is not very large, the CCF computation is faster than the
Cholesky computation.
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New approach

Improve the IPM Predictor-Corrector with the normal
equations Cholesky factorization, reducing processing time
and/or the storage required at each iteration.

Replacing the Cholesky factorization by CCF.

In early iterations we adopting a CCF parameter value such
that the matrix obtained in factorization is very sparse.

In later iterations we compute a CCF factorizations closer to
the Cholesky factorization.
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PCx Code

Preprocess

Ordering
Multiple Minimun Degree

Simbolic Cholesky
Factorization

Main Loop

Termination 
Test

Numeric Cholesky
Factorization

Directions
 Computation
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PCx Code with the CCF
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PCx Code with the CCF
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PCx Code with the CCF

Preprocess

Ordering
Multiple Minimun Degree

Main Loop

Termination 
Test

Directions
 Computation

Controlled Cholesky
Factorization
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Modifications in the CCF

Computation of the need storage

The largest column entries selection

Treatment of the diagonal failure.
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Storage

Compressed Column Storage format.

L is stored in a vector with maximum size

Dim(L) = nnz(AAt) + η ·m.
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Storage

When the CCF is used for the normal system direct solution, its
maximum dimension will be given by

DimmaxL = min{nnz(G ), δmax},

where nnz(G ) is the number of Cholesky factor nonzeros entries
and

δmax = nnz(AAt) + mη −
(
η2

2
− η

2

)
and is computed by

nnz(AAt) + η · (m − η) + η + (η − 1) + (η − 2) · · · (η − (η − 1)).
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The largest columns entries selection

The k largest column entries selection is done through two sorting:

sorting of the k largest column nonzero entries in decreasing
order;

sorting of the corresponding index in increase order.
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Selection sort

To make the two sorts, CCF uses the selection sort algorithm
which has complexity:

O(n2) to sort a list of length n,

O(k3) to sort only the k larger entries from a n length list
when k < n − k.
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Heapsort

In the context of precondicioner, the sort used in the CCF don’t
has strong influence in the processing time.

For the new approach this type of sorting can be inefficient. So we
used Heapsort algorithm.

The Heapsort has complexity:

O(nlogn) to build a heap of length n,

O(klogn), to sort only the k larger entries from a heap of
length n.
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Selecting sort×Heapsort

Prob Row(m) Col

PDS-06 9156 61120
PDS-10 15648 48763
PDS-20 32276 106180

Prob η1 η2 η3 it

PDS-06 36 for it ≤ 11 m for it > 11 35
PDS-10 31 for it ≤ 11 62 for 12 ≤ it ≤ 34 m for it > 34 48
PDS-20 64 for it ≤ 19 128 for 20 ≤ it ≤ 24 256 for 25 ≤ it ≤ 29 51

Table : η Values and CCF iterations number
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Selecting sort×Heapsort

Problem Selecting sort Heapsort in the 2th sort Heapsort

PDS-06 9.67 8.38 8.31
PDS-10 34.94 30.15 28.75
PDS-20 390.21 301.38 290.28

Table : Time in seconds
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Treatment of the diagonal failure

Exponential increase technique: Given an entry very small or
negative in the diagonal, restart the factorization after adding
to the diagonal entries of ADAt , the value αi = λ2i , where
λ = 5 · 10−4 and i = 1, 2, ..., Imax , being Imax the maximum
number of restarts allowed .

The exponential increase technique causes an increase in the
processing time of the corresponding iteration and an even
greater change in the matrix.

To avoid restarting, in our approach when a pivot undesired is
computed, it is replaced by the value 10128 and the
factorization continues from there.
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CCF Parameter

What will be the initial η value?

How will be the η increase along the iterations?

To determine the η value we can consider:

the problem dimension;

the ADAt matrix Cholesky factor density;

the progress at each iteration;

...
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Tests with η increments in PDS-10 problem

The same η value is used in several iterations.

We used η = 31 until 11th iteration, η = 62 until 34o iteration and
the complete Cholesky was used in the remaining iteration.

Increasing successive increments of η are made along the
iterations

We used η = 3 in the first iteration and increments of λk , where
k is the iteration number and λ = 2.1.
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Tests with increments of η in PDS-10 problem

Comparison of time and the number of iterations between the two
η increments approaches and complete Cholesky.

η increment interation number time

several iteration with same η 48 28.75
successive increments of η 51 46.40
complete Cholesky 40 57.02
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Considerations

The CCF algorithm is used to compute the complete Cholesky
factorization, but it isn’t efficient for this purpose.

Use another specific complete factorization implementation,
as the Ng-Peyton code.

Use the preconditioned conjugate gradient method with the
splitting preconditioner together with the proposed approach.

Study if the symbolic factorization, could help the CCF to be
more efficient.

Find a good heuristic to determine the η value at each
iteration
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Thanks!


	

